Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.476
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612870

RESUMO

Ulcerative colitis (UC) is one of the inflammatory bowel diseases (IBD) that is characterized by systemic immune system activation. This study was performed to assess the alleviative effect of administering an aqueous extract of Eucommia ulmoides leaves (AEEL) on cognitive dysfunction in mice with dextran sulfate sodium (DSS)-induced colitis. The major bioactive compounds of AEEL were identified as a quinic acid derivative, caffeic acid-O-hexoside, and 3-O-caffeoylquinic acid using UPLC Q-TOF/MSE. AEEL administration alleviated colitis symptoms, which are bodyweight change and colon shortening. Moreover, AEEL administration protected intestinal barrier integrity by increasing the tight junction protein expression levels in colon tissues. Likewise, AEEL improved behavioral dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. Additionally, AEEL improved short-chain fatty acid (SCFA) content in the feces of DSS-induced mice. In addition, AEEL improved damaged cholinergic systems in brain tissue and damaged mitochondrial and antioxidant functions in colon and brain tissues caused by DSS. Also, AEEL protected against DSS-induced cytotoxicity and inflammation in colon and brain tissues by c-Jun N-terminal kinase (JNK) and the toll-like receptor 4 (TLR4) signaling pathway. Therefore, these results suggest that AEEL is a natural material that alleviates DSS-induced cognitive dysfunction with the modulation of gut-brain interaction.


Assuntos
Disfunção Cognitiva , Colite , Eucommiaceae , Animais , Camundongos , Sulfato de Dextrana/efeitos adversos , Receptor 4 Toll-Like , Colite/induzido quimicamente , Colite/tratamento farmacológico , Ácido Clorogênico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico
2.
Sci Total Environ ; 927: 172069, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38582117

RESUMO

Ferroptosis is a newly recognized type of programmed cell death that is implicated in the pathophysiological process of neurological disorders. Our previous studies have revealed that exposure to high concentrations of fluoride for long periods of time induces hippocampal neural injury and cognitive deficits. However, whether ferroptosis is involved in fluoride-induced neuronal death and the underlying mechanism remain unknown. In this study, the results indicated that exposure to high fluoride triggered ferroptosis in SH-SY5Y cells and in the hippocampus of mice. Fluoride exposure accelerated the lysosomal degradation of GPX4 and led to neuronal ferroptosis, while GPX4 overexpression protected SH-SY5Y cells against fluoride-induced neurotoxicity. Intriguingly, the enhanced chaperone-mediated autophagy (CMA) induced by fluoride stimulation was responsible for GPX4 degradation because the inhibition of CMA activity by LAMP2A knockdown effectively prevented fluoride-induced GPX4 loss. Furthermore, mitochondrial ROS (mtROS) accumulation caused by fluoride contributed to CMA activation-mediated GPX4 degradation and subsequent neuronal ferroptosis. Notably, the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) or the ROS scavenger N-acetyl-L-cysteine (NAC) alleviated fluoride-evoked hippocampal neuronal death and synaptic injury as well as cognitive deficits in mice. The present studies indicates that ferroptosis is a novel mechanism of fluoride-induced neurotoxicity and that chronic fluoride exposure facilitates GPX4 degradation via mtROS chaperone-mediated autophagy, leading to neuronal ferroptosis and cognitive impairment.


Assuntos
Autofagia Mediada por Chaperonas , Disfunção Cognitiva , Ferroptose , Fluoretos , Neurônios , Fosfolipídeo Hidroperóxido Glutationa Peroxidase , Espécies Reativas de Oxigênio , Ferroptose/efeitos dos fármacos , Ferroptose/fisiologia , Fosfolipídeo Hidroperóxido Glutationa Peroxidase/metabolismo , Disfunção Cognitiva/induzido quimicamente , Camundongos , Animais , Fluoretos/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Neurônios/efeitos dos fármacos , Autofagia Mediada por Chaperonas/fisiologia , Autofagia Mediada por Chaperonas/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Autofagia/efeitos dos fármacos
3.
Mol Med ; 30(1): 39, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493090

RESUMO

OBJECTIVE: Anesthetics have been linked to cognitive alterations, particularly in the elderly. The current research delineates how Fibroblast Growth Factor 2 (Fgf2) modulates tau protein phosphorylation, contributing to cognitive impairments in aged rats upon sevoflurane administration. METHODS: Rats aged 3, 12, and 18 months were subjected to a 2.5% sevoflurane exposure to form a neurotoxicity model. Cognitive performance was gauged, and the GEO database was employed to identify differentially expressed genes (DEGs) in the 18-month-old cohort post sevoflurane exposure. Bioinformatics tools, inclusive of STRING and GeneCards, facilitated detailed analysis. Experimental validations, both in vivo and in vitro, examined Fgf2's effect on tau phosphorylation. RESULTS: Sevoflurane notably altered cognitive behavior in older rats. Out of 128 DEGs discerned, Fgf2 stood out as instrumental in regulating tau protein phosphorylation. Sevoflurane exposure spiked Fgf2 expression in cortical neurons, intensifying tau phosphorylation via the PI3K/AKT/Gsk3b trajectory. Diminishing Fgf2 expression correspondingly curtailed tau phosphorylation, neurofibrillary tangles, and enhanced cognitive capacities in aged rats. CONCLUSION: Sevoflurane elicits a surge in Fgf2 expression in aging rats, directing tau protein phosphorylation through the PI3K/AKT/Gsk3b route, instigating cognitive aberrations.


Assuntos
Anestésicos Inalatórios , Disfunção Cognitiva , Éteres Metílicos , Idoso , Animais , Humanos , Lactente , Ratos , Anestésicos Inalatórios/efeitos adversos , Anestésicos Inalatórios/metabolismo , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Éteres Metílicos/farmacologia , Éteres Metílicos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sevoflurano/metabolismo , Sevoflurano/farmacologia , Proteínas tau/metabolismo , Fator 2 de Crescimento de Fibroblastos/metabolismo
4.
Artigo em Russo | MEDLINE | ID: mdl-38529862

RESUMO

OBJECTIVE: To evaluate the effect of a sequential therapy regimen with Mexidol (500 mg injections intravenously for 14 days) and Mexidol FORTE 250 (250 mg tablets 3 times a day for 60 days) on higher cortical functions in patients with moderate cognitive disorders in chronic cerebral ischemia. MATERIAL AND METHODS: A comparative, prospective study included 63 patients with chronic cerebral ischemia with moderate cognitive impairment. All patients received basic therapy aimed at reducing risk factors (antihypertensive, antithrombotic drugs as indicated). Patients of the main group (30 people: 12 men, 18 women) received Mexidol intravenously 500 mg in 100 ml of 0.9% NaCl solution once a day for 14 days, then Mexidol FORTE 250 (film-coated tablets) 250 mg 3 times a day for the next 60 days. The comparison group consisted of 33 patients (14 men, 19 women) who received only basic therapy. The groups were comparable in terms of age, sex characteristics and severity of cognitive deficit. We examined cognitive status (MoCA scale, Frontal Dysfunction Battery, 10 Word Memorization tests), severity of asthenia (MFI-20 scale), anxiety and depression (HADS scale), patient's subjective assessment of the dynamics of the condition (CGI-improvement scale) in 1st, 14th and 74th±5 days of observation. On days 1 and 74±5 of observation, patients were examined using transcranial magnetic stimulation to study the neuronal activity of the cerebral cortex. RESULTS: In the main group, at the time of completion of taking Mexidol and Mexidol FORTE 250, a pronounced cognitive regression was noted (MoCA scale +3 points, difference with the comparison group 1 point (p<0.0001); Frontal Dysfunction Battery test +4 points, difference with comparison group 2 points (p<0.001); memory test «10 words¼ +2 points, difference with the comparison group 1 point (p<0.05), emotional (HADS anxiety scale -8 points, difference with the comparison group 3 points (p<0.001), depression -3.5 points, difference with the comparison group 1.5 points (p<0.01), asthenic disorders (MFI-20 scale -30 points, difference with the comparison group 15.5 points (p<0.01), improvement in the well-being of patients (CGI-improvement scale -2 points, difference with the comparison group 1 point (p<0.0001). According to the transcranial magnetic stimulation performed, a statistically significant decrease in the central motor conduction time at the level of 1 and 2 motor neurons of the pyramidal tract bilaterally from the start to the end of therapy with Mexidol and Mexidol FORTE 250 was determined (p<0.01). An inverse correlation was found between the time of central motor conduction and the results of the Frontal Dysfunction Battery test at the same time points with left-sided localization of 1 motor neuron (p<0.01). The results of a study of the use of sequential therapy with Mexidol 500 mg IV drip 1 time per day for 14 days followed by oral administration of Mexidol FORTE 250 1 tablet 3 times a day for 60 days indicate its clinical effectiveness and safety in patients with chronic cerebral ischemia with mild cognitive impairment, and also confirm its importance for preventing the progression of cognitive disorders.


Assuntos
Isquemia Encefálica , Transtornos Cognitivos , Disfunção Cognitiva , Masculino , Humanos , Feminino , Estudos Prospectivos , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Resultado do Tratamento , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/induzido quimicamente , Transtornos Cognitivos/tratamento farmacológico , Picolinas , Astenia/tratamento farmacológico
5.
PLoS One ; 19(3): e0295096, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551911

RESUMO

Some pregnant women have to experience non-obstetric surgery during pregnancy under general anesthesia. Our previous studies showed that maternal exposure to sevoflurane, isoflurane, propofol, and ketamine causes cognitive deficits in offspring. Histone acetylation has been implicated in synaptic plasticity. Propofol is commonly used in non-obstetric procedures on pregnant women. Previous studies in our laboratory showed that maternal propofol exposure in pregnancy impairs learning and memory in offspring by disturbing histone acetylation. The present study aims to investigate whether HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) could attenuate learning and memory deficits in offspring caused by maternal surgery under propofol anesthesia during mid-pregnancy. Maternal rats were exposed to propofol or underwent abdominal surgery under propofol anesthesia during middle pregnancy. The learning and memory abilities of the offspring rats were assessed using the Morris water maze (MWM) test. The protein levels of histone deacetylase 2 (HDAC2), phosphorylated cAMP response-element binding (p-CREB), brain-derived neurotrophic factor (BDNF), and phosphorylated tyrosine kinase B (p-TrkB) in the hippocampus of the offspring rats were evaluated by immunofluorescence staining and western blot. Hippocampal neuroapoptosis was detected by TUNEL staining. Our results showed that maternal propofol exposure during middle pregnancy impaired the water-maze learning and memory of the offspring rats, increased the protein level of HDAC2 and reduced the protein levels of p-CREB, BDNF and p-TrkB in the hippocampus of the offspring, and such effects were exacerbated by surgery. SAHA alleviated the cognitive dysfunction and rescued the changes in the protein levels of p-CREB, BDNF and p-TrkB induced by maternal propofol exposure alone or maternal propofol exposure plus surgery. Therefore, SAHA could be a potential and promising agent for treating the learning and memory deficits in offspring caused by maternal nonobstetric surgery under propofol anesthesia.


Assuntos
Disfunção Cognitiva , Propofol , Humanos , Gravidez , Ratos , Animais , Feminino , Propofol/efeitos adversos , Vorinostat/farmacologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Histonas/metabolismo , Aprendizagem em Labirinto , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Anestesia Geral
6.
Physiol Behav ; 278: 114521, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492911

RESUMO

Epilepsy is a neurological condition distinguished by recurrent and unexpected seizures. Astrocytic channels and transporters are essential for maintaining normal neuronal functionality. The astrocytic water channel, aquaporin-4 (AQP4), which plays a pivotal role in regulating water homeostasis, is a potential target for epileptogenesis. In present study, we examined the effect of different doses (10, 50, 100 µM and 5 mM) of AQP4 inhibitor, 2-nicotinamide-1, 3, 4-thiadiazole (TGN-020), during kindling acquisition, on seizure parameters and seizure-induced cognitive impairments. Animals were kindled by injection of pentylenetetrazole (PTZ: 37.5 mg/kg, i.p.). TGN-020 was administered into the right lateral cerebral ventricle 30 min before PTZ every alternate day. Seizure parameters were assessed 20 min after PTZ administration. One day following the last PTZ injection, memory performance was investigated using spontaneous alternation in Y-maze and novel object recognition (NOR) tests. The inhibition of AQP4 during the kindling process significantly decreased the maximal seizure stage and seizure duration (two-way ANOVA, P = 0.0001) and increased the latency of seizure onset and the number of PTZ injections required to induce different seizure stages (one-way ANOVA, P = 0.0001). Compared to kindled rats, the results of the NOR tests showed that AQP4 inhibition during PTZ-kindling prevented recognition memory impairment. Based on these results, AQP4 could be involved in seizure development and seizure-induced cognitive impairment. More investigation is required to fully understand the complex interactions between seizure activity, water homeostasis, and cognitive dysfunction, which may help identify potential therapeutic targets for these conditions.


Assuntos
Aquaporina 4 , Disfunção Cognitiva , Excitação Neurológica , Niacinamida , Tiadiazóis , Animais , Ratos , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Niacinamida/administração & dosagem , Niacinamida/análogos & derivados , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/complicações , Convulsões/tratamento farmacológico , Tiadiazóis/administração & dosagem , Água/efeitos adversos , Aquaporina 4/antagonistas & inibidores
7.
Curr Med Sci ; 44(2): 291-297, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38517674

RESUMO

Postoperative cognitive dysfunction (POCD) remains a major issue that worsens the prognosis of elderly surgery patients. This article reviews the current research on the effect of different anesthesia methods and commonly utilized anesthetics on the incidence of POCD in elderly patients, aiming to provide an understanding of the underlying mechanisms contributing to this condition and facilitate the development of more reasonable anesthesia protocols, ultimately reducing the incidence of POCD in elderly surgery patients.


Assuntos
Anestesia , Disfunção Cognitiva , Complicações Cognitivas Pós-Operatórias , Humanos , Idoso , Complicações Cognitivas Pós-Operatórias/induzido quimicamente , Complicações Cognitivas Pós-Operatórias/epidemiologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Anestesia/efeitos adversos , Anestésicos Intravenosos
8.
Neurochem Res ; 49(5): 1306-1321, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472553

RESUMO

Sepsis-induced neuroinflammation is significantly associated with sepsis-related brain dysfunction. Remimazolam is a novel ultra-short-acting benzodiazepine anesthetic with multiple organ protective effects. However, it is unknown whether remimazolam can ameliorate LPS-induced brain impairment. In this study, Lipopolysaccharide (5 mg/kg, LPS) severely impaired Sprague-Dawley rats spatial learning ability, memory, and cognitive function. However, remimazolam treatment showed a protective effect on LPS-induced cognitive dysfunction. Remimazolam partly reversed LPS-induced splenomegaly, decreased serum cytokine expression, suppressed hippocampal M1 microglial activation, and mitigated oxidative stress injury and neuroinflammation. Electroacupuncture (EA) or PNU282987 treatment improved LPS-induced cognitive dysfunction and also significantly inhibited neuroinflammation and systemic inflammation. However, MLA, ML385, or subdiaphragmatic vagus nerve (SDV) treatment abolished the protective effects of remimazolam. Further mechanistic studies showed that remimazolam induces protective effects by activating subdiaphragmatic vagus nerve target α7nAChR-mediated Nrf2/HO-1 signaling pathway. These results demonstrate that remimazolam can up-regulate α7nAChR, Cyto-Nrf2, HO-1, and cognitive-related (CREB, BDNF, PSD95) protein expressions, suppress M1 microglia, ameliorate neuroinflammation or systemic inflammation, and reverse cognitive dysfunction. Therefore, this study provides insight into a new therapeutic target for the treatment of sepsis-induced cerebral dysfunction.


Assuntos
Disfunção Cognitiva , Sepse , Ratos , Animais , Ratos Sprague-Dawley , Lipopolissacarídeos/toxicidade , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neuroinflamatórias , Transdução de Sinais , Benzodiazepinas/efeitos adversos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Nervo Vago/metabolismo
9.
J Alzheimers Dis ; 98(3): 825-835, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38461503

RESUMO

Background: The Food and Drug Administration (FDA) has approved lecanemab and aducanumab and is reviewing donanemab, but they have questionable efficacy, serious side effects and are costly, whereas melatonin administration and aerobic exercise for a short time may overcome these problems. Objective: We aim to compare the efficacy on cognitive function, tolerability and acceptability of melatonin administration and aerobic exercise for a short time with donanemab, lecanemab, and aducanumab in people with mild AD and MCI. Methods: We systematically reviewed relevant randomized placebo-controlled trials (RCTs) in PubMed, the Cochrane Library, CINHAL, and ClinicalTrials.gov and performed network meta-analyses. Results: The analysis included 10 randomized placebo-controlled trials with 4,599 patients. Although melatonin and aerobic exercise for a short time were significantly more effective than donanemab, lecanemab, aducanumab and placebo in the primary analysis, there was significant heterogeneity. In the sensitivity analysis excluding exercise, melatonin was significantly more effective than donanemab, lecanemab, aducanumab and placebo, with no significant heterogeneity. Aerobic exercise for a short time was significantly less acceptable than donanemab, aducanumab and placebo. Donanemab, lecanemab, and aducanumab were significantly less tolerable than placebo and donanemab and lecanemab were significantly less acceptable than placebo. CONCLUSIONS: Melatonin may be a better potential disease-modifying treatment for cognitive decline in mild AD and MCI. Aerobic exercise for a short time might also be better than donanemab, lecanemab and aducanumab if continued, as it is well tolerated and more effective, although less valid due to heterogeneity. Another limitation is the small number of participants.


Assuntos
Doença de Alzheimer , Anticorpos Monoclonais Humanizados , Disfunção Cognitiva , Melatonina , Humanos , Melatonina/uso terapêutico , Melatonina/farmacologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/induzido quimicamente , Metanálise em Rede , Cognição , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Exercício Físico
10.
CNS Neurosci Ther ; 30(3): e14689, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38516831

RESUMO

AIMS: Chronic alcohol exposure leads to persistent neurological disorders, which are mainly attributed to neuroinflammation and apoptosis. Stimulator of IFN genes (STING) is essential in the cytosolic DNA sensing pathway and is involved in inflammation and cellular death processes. This study was to examine the expression pattern and biological functions of STING signaling in alcohol use disorder (AUD). METHODS: Cell-free DNA was extracted from human and mouse plasma. C57BL/6J mice were given alcohol by gavage for 28 days, and behavior tests were used to determine their mood and cognition. Cultured cells were treated with ethanol for 24 hours. The STING agonist DMXAA, STING inhibitor C-176, and STING-siRNA were used to intervene the STING. qPCR, western blot, and immunofluorescence staining were used to assess STING signaling, inflammation, and apoptosis. RESULTS: Circulating cell-free mitochondrial DNA (mtDNA) was increased in individuals with AUD and mice chronically exposed to alcohol. Upregulation of STING signaling under alcohol exposure led to inflammatory responses in BV2 cells and mitochondrial apoptosis in PC12 cells. DMXAA exacerbated alcohol-induced cognitive impairment and increased the activation of microglia, neuroinflammation, and apoptosis in the medial prefrontal cortex (mPFC), while C-176 exerted neuroprotection. CONCLUSION: Activation of STING signaling played an essential role in alcohol-induced inflammation and mitochondrial apoptosis in the mPFC. This study identifies STING as a promising therapeutic target for AUD.


Assuntos
Disfunção Cognitiva , Doenças Neuroinflamatórias , Humanos , Camundongos , Animais , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos Endogâmicos C57BL , Inflamação/induzido quimicamente , Inflamação/metabolismo , Etanol/toxicidade , DNA Mitocondrial/metabolismo , Apoptose , Disfunção Cognitiva/induzido quimicamente
11.
BMJ Case Rep ; 17(3)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38453220

RESUMO

Dimenhydrinate is an over-the-counter antihistaminergic medication with anticholinergic properties used to treat nausea or motion sickness worldwide. There is a well-established correlation between the use of anticholinergic medications and dementia, however, it is unclear if a causal role exists. We report a case of minor neurocognitive disorder in a woman in her 40s with several years of high-dose daily dimenhydrinate abuse who subsequently developed significant delusional beliefs. Her clinical presentation was confounded by numerous other factors that could have impacted her cognition, such as a longstanding presumed learning disability, ankylosing spondylitis with adalimumab treatment, extensive cannabis use or potential development of a primary psychotic disorder. Her workup was within normal limits, and she has not responded to first-line antipsychotic medications to date. This case report adds to the growing evidence supporting concerns about potentially irreversible cognitive deficits in chronic misuse of anticholinergic agents, an association previously observed only in the elderly population.


Assuntos
Disfunção Cognitiva , Dimenidrinato , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Antagonistas Colinérgicos/efeitos adversos , Disfunção Cognitiva/induzido quimicamente , Dimenidrinato/efeitos adversos , Transtornos Psicóticos/tratamento farmacológico
12.
Physiol Behav ; 278: 114508, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38460779

RESUMO

BACKGROUND: Neurodegenerative disorders are associated with chronic neuroinflammation, which contributes to their pathogenesis and progression. Resveratrol (RSV) is a polyphenolic compound with strong antioxidant and anti-inflammatory properties. In the present study, we investigated whether RSV could protect against cognitive impairment and inflammatory response in a mouse model of chronic neuroinflammation induced by lipopolysaccharide (LPS). METHOD: Mice received oral RSV (30 mg/kg) or vehicle for two weeks, and injected with LPS (0.75 mg/kg) or saline daily for the last seven days. After two weeks, mice were subjected to behavioral assessments using the Morris water maze and Y-maze. Moreover, mRNA expression of several inflammatory markers, neuronal loss, and glial density were evaluated in the hippocampus of treated mice. RESULTS: Our findings showed that RSV treatment effectively improved spatial and working memory impairments induced by LPS. In addition, RSV significantly reduced hippocampal glial densities and neuronal loss in LPS-injected mice. Moreover, RSV treatment suppressed LPS-induced upregulation of NF-κB, IL-6, IL-1ß, and GFAP in the hippocampus of treated mice. CONCLUSION: Taken together, our results highlight the detrimental effect of systemic inflammation on the hippocampus and the potential of natural products with anti-inflammatory effects to counteract this impact.


Assuntos
Disfunção Cognitiva , Lipopolissacarídeos , Camundongos , Animais , Resveratrol/uso terapêutico , Lipopolissacarídeos/toxicidade , Doenças Neuroinflamatórias , Microglia/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Modelos Animais de Doenças , NF-kappa B/metabolismo , Hipocampo/metabolismo , Aprendizagem em Labirinto
13.
Artigo em Inglês | MEDLINE | ID: mdl-38541362

RESUMO

The prevalence of dementia increases with nearly 10 million new cases each year, with Alzheimer's disease contributing to 60-70% of cases. Environmental factors such as drinking water have been evaluated to determine if a relationship exists between trace elements in drinking water and the risk of developing cognitive disorders in the elderly. The purpose of the current systematic review was to evaluate an association between the composition of drinking water and cognitive function in the elderly. In accordance with the Preferred Reporting Items for Systematic Review and Meta-Analyses guidelines, a literature search was conducted using PubMed and CINAHL databases. A total of 10 studies were included in the current systematic review. Aluminum is the most commonly evaluated trace element in studies (n = 8), followed by silica (n = 5), calcium (n = 4), and fluoride (n = 4). Aluminum exposure showed an increased risk of cognitive decline in four studies, with no association reported in the other studies. Higher silica and pH levels were shown to be protective against a decline in cognitive function. A similar protective effect of calcium was found in two studies. Future research should measure multiple trace mineral levels in all water sources to evaluate the impact on cognitive function.


Assuntos
Disfunção Cognitiva , Água Potável , Oligoelementos , Idoso , Humanos , Alumínio/análise , Cálcio/análise , Cognição , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , Água Potável/análise , Dióxido de Silício/análise , Oligoelementos/análise
14.
CNS Neurosci Ther ; 30(2): e14612, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38334030

RESUMO

AIMS: Numerous studies on animals have shown that exposure to general anesthetics in infant stage may cause neurocognitive impairment. However, the exact mechanism is not clear. The dysfunction of iron metabolism can cause neurodevelopmental disorders. Therefore, we investigated the effect of iron metabolism disorder induced by sevoflurane (Sev) on cognitive function and the proliferation of neural precursor cells (NPCs) and neural stem cells (NSCs) in infant mice. METHODS: C57BL/6 mice of postnatal day 14 and neural stem cells NE4C were treated with 2% Sev for 6 h. We used the Morris water maze (MWM) to test the cognitive function of infant mice. The proliferation of NPCs was measured using bromodeoxyuridine (BrdU) label and their markers Ki67 and Pax6 in infant brain tissues 12 h after anesthesia. Meanwhile, we used immunohistochemical stain, immunofluorescence assay, western blot, and flow cytometer to evaluate the myelinogenesis, iron levels, and cell proliferation in cortex and hippocampus or in NE4C cells. RESULTS: The results showed that Sev significantly caused cognitive deficiency in infant mice. Further, we found that Sev inhibited oligodendrocytes proliferation and myelinogenesis by decreasing MBP and CC-1 expression and iron levels. Meanwhile, Sev also induced the iron deficiency in neurons and NSCs by downregulating FtH and FtL expression and upregulating the TfR1 expression in the cortex and hippocampus, which dramatically suppressed the proliferation of NSCs and NPCs as indicated by decreasing the colocalization of Pax6+ and BrdU+ cells, and caused the decrease in the number of neurons. Interestingly, iron supplementation before anesthesia significantly improved iron deficiency in cortex and hippocampus and cognitive deficiency induced by Sev in infant mice. Iron therapy inhibited the decrease of MBP expression, iron levels in neurons and oligodendrocytes, and DNA synthesis of Pax6+ cells in hippocampus induced by Sev. Meanwhile, the number of neurons was partially recovered in hippocampus. CONCLUSION: The results from the present study demonstrated that Sev-induced iron deficiency might be a new mechanism of cognitive impairment caused by inhaled anesthetics in infant mice. Iron supplementation before anesthesia is an effective strategy to prevent cognitive impairment caused by Sev in infants.


Assuntos
Disfunção Cognitiva , Deficiências de Ferro , Células-Tronco Neurais , Humanos , Camundongos , Animais , Sevoflurano/toxicidade , Células-Tronco Neurais/metabolismo , Bromodesoxiuridina/metabolismo , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/metabolismo , Proliferação de Células , Ferro/metabolismo , Hipocampo/metabolismo
15.
Artigo em Inglês | MEDLINE | ID: mdl-38369039

RESUMO

Evidence has shown that consuming trans fatty acids (TFA) during development leads to their incorporation into the nervous tissue, resulting in neurological changes in flies. In this study, Drosophila melanogaster was exposed to different concentrations of hydrogenated vegetable fat (HVF) during development: substitute hydrogenated vegetable fat (SHVF), HVF 10 %, and HVF 20 %. The objective was to evaluate the effects of early trans fat exposure on cognition and associated pathways in flies. The results showed that early TFA exposure provoked a cerebral redox imbalance, as confirmed by increased reactive species (HVF 10 and 20 %) and lipid peroxidation (SHVF, HVF 10, and 20 %), reduced nuclear factor erythroid 2-related factor 2 immunoreactivity (HVF 10 and 20 %), and increased heat shock protein 70 (HVF 20 %), which was possibly responsible for decreasing superoxide dismutase (SHVF, HVF 10, and 20 %) and catalase (HVF 20 %) activities. Furthermore, the presence of TFA in nervous tissue impaired learning (HVF 10 and 20 %) and memory at 6 and 24 h (SHVF, HVF 10, and 20 %). These cognitive impairments may be linked to reduced Shank levels (HVF 20 %) and increased acetylcholinesterase activity (SHVF, HVF 10 and 20 %) observed. Our findings demonstrate that early exposure to trans fat leads to cerebral redox imbalance, altering proteins associated with stress, synaptic plasticity, and the cholinergic system, consequently leading to cognitive impairment in flies.


Assuntos
Disfunção Cognitiva , Ácidos Graxos trans , Animais , Drosophila melanogaster , Ácidos Graxos trans/toxicidade , Acetilcolinesterase , Estresse Oxidativo , Disfunção Cognitiva/induzido quimicamente , Plasticidade Neuronal
16.
Glia ; 72(5): 960-981, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38363046

RESUMO

In the adult brain, activity-dependent myelin plasticity is required for proper learning and memory consolidation. Myelin loss, alteration, or even subtle structural modifications can therefore compromise the network activity, leading to functional impairment. In multiple sclerosis, spontaneous myelin repair process is possible, but it is heterogeneous among patients, sometimes leading to functional recovery, often more visible at the motor level than at the cognitive level. In cuprizone-treated mouse model, massive brain demyelination is followed by spontaneous and robust remyelination. However, reformed myelin, although functional, may not exhibit the same morphological characteristics as developmental myelin, which can have an impact on the activity of neural networks. In this context, we used the cuprizone-treated mouse model to analyze the structural, functional, and cognitive long-term effects of transient demyelination. Our results show that an episode of demyelination induces despite remyelination long-term cognitive impairment, such as deficits in spatial working memory, social memory, cognitive flexibility, and hyperactivity. These deficits were associated with a reduction in myelin content in the medial prefrontal cortex (mPFC) and hippocampus (HPC), as well as structural myelin modifications, suggesting that the remyelination process may be imperfect in these structures. In vivo electrophysiological recordings showed that the demyelination episode altered the synchronization of HPC-mPFC activity, which is crucial for memory processes. Altogether, our data indicate that the myelin repair process following transient demyelination does not allow the complete recovery of the initial myelin properties in cortical structures. These subtle modifications alter network features, leading to prolonged cognitive deficits in mice.


Assuntos
Disfunção Cognitiva , Doenças Desmielinizantes , Humanos , Animais , Camundongos , Bainha de Mielina , Doenças Desmielinizantes/induzido quimicamente , Cuprizona/toxicidade , Encéfalo , Modelos Animais de Doenças , Disfunção Cognitiva/induzido quimicamente , Camundongos Endogâmicos C57BL , Oligodendroglia/fisiologia
17.
J Hazard Mater ; 468: 133785, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38367441

RESUMO

BACKGROUND: Although growing evidence has shown independent links of long-term exposure to fine particulate matter (PM2.5) with cognitive impairment, the effects of its constituents remain unclear. This study aims to explore the associations of long-term exposure to ambient PM2.5 constituents' mixture with cognitive impairment in Chinese older adults, and to further identify the main contributor. METHODS: 15,274 adults ≥ 65 years old were recruited by the Chinese Longitudinal Healthy Longevity Study (CLHLS) and followed up through 7 waves during 2000-2018. Concentrations of ambient PM2.5 and its constituents (i.e., black carbon [BC], organic matter [OM], ammonium [NH4+], sulfate [SO42-], and nitrate [NO3-]) were estimated by satellite retrievals and machine learning models. Quantile-based g-computation model was employed to assess the joint effects of a mixture of 5 PM2.5 constituents and their relative contributions to cognitive impairment. Analyses stratified by age group, sex, residence (urban vs. rural), and region (north vs. south) were performed to identify vulnerable populations. RESULTS: During the average 3.03 follow-up visits (89,296.9 person-years), 4294 (28.1%) participants had developed cognitive impairment. The adjusted hazard ratio [HR] (95% confidence interval [CI]) for cognitive impairment for every quartile increase in mixture exposure to 5 PM2.5 constituents was 1.08 (1.05-1.11). BC held the largest index weight (0.69) in the positive direction in the qg-computation model, followed by OM (0.31). Subgroup analyses suggested stronger associations in younger old adults and rural residents. CONCLUSION: Long-term exposure to ambient PM2.5, particularly its constituents BC and OM, is associated with an elevated risk of cognitive impairment onset among Chinese older adults.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Disfunção Cognitiva , Humanos , Idoso , Material Particulado/toxicidade , Estudos de Coortes , Poluentes Atmosféricos/toxicidade , Exposição Ambiental , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/epidemiologia , China/epidemiologia , Poluição do Ar/efeitos adversos
18.
Environ Pollut ; 346: 123555, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369090

RESUMO

Silver nanoparticles (AgNPs) are widely used in daily life and medical fields owing to their unique physicochemical properties. Daily exposure to AgNPs has become a great concern regarding their potential toxicity to human beings, especially to the central nervous system. Ferroptosis, a newly recognized programmed cell death, was recently reported to be associated with the neurodegenerative process. However, whether and how ferroptosis contributes to AgNPs-induced neurotoxicity remain unclear. In this study, we investigated the role of ferroptosis in neurotoxic effects induced by AgNPs using in vitro and in vivo models. Our results showed that AgNPs induced a notable dose-dependent cytotoxic effect on HT-22 cells and cognitive impairment in mice as indicated by a decline in learning and memory and brain tissue injuries. These findings were accompanied by iron overload caused by the disruption of the iron transport system and activation of NCOA4-mediated autophagic degradation of ferritin. The excessive free iron subsequently induced GSH depletion, loss of GPX and SOD activities, differential expression of Nrf2 signaling pathway elements, down-regulation of GPX4 protein and production of lipid peroxides, initiating ferroptosis cascades. The mitigating effects of ferrostatin-1 and deferoxamine on iron overload, redox imbalance, neuronal cell death, impairment of mice learning and memory, Aß deposition and synaptic plasticity reduction suggested ferroptosis as a potential molecular mechanism in AgNPs-induced neurotoxicity. Taken together, these results demonstrated that AgNPs induced neuronal cell death and cognitive impairment with Aß deposition and reduction of synaptic plasticity, which were mediated by ferroptosis caused by iron-mediated lipid peroxidation. Our study provides new insights into the underlying mechanisms of AgNPs-induced neurotoxicity and predicts potential preventive strategies.


Assuntos
Disfunção Cognitiva , Ferroptose , Sobrecarga de Ferro , Nanopartículas Metálicas , Camundongos , Humanos , Animais , Prata/toxicidade , Ferroptose/fisiologia , Nanopartículas Metálicas/toxicidade , Ferro/metabolismo , Disfunção Cognitiva/induzido quimicamente
19.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38339117

RESUMO

Sideritis scardica Griseb. and Clinopodium vulgare L., belonging to the Lamiaceae family, are rich in terpenoids and phenolics and exhibit various pharmacological effects, including antioxidant, anti-inflammatory and anti-cancer activities. While the memory-enhancing impacts of S. scardica are well documented, the cognitive benefits of C. vulgare remain unexplored. This study assessed the potential effect of C. vulgare on learning and memory in healthy and scopolamine (Sco)-induced memory-impaired male Wistar rats, comparing it with the effects of S. scardica. Over a 21-day period, rats orally received extracts of cultivated S. scardica (200 mg/kg) and C. vulgare (100 mg/kg), either individually or in combination, with administration starting 10 days before and continuing 11 days simultaneously with Sco injection at a dose of 2 mg/kg intraperitoneally. The results showed that both extracts effectively mitigated Sco-induced memory impairment. Their combination significantly improved recognition memory and maintained monoaminergic function. S. scardica excelled in preserving spatial working memory, while C. vulgare exhibited comparable retention of recognition memory, robust antioxidant activity and acetylcholinesterase inhibitory activity. The extracts alleviated Sco-induced downregulation of p-CREB/BDNF signaling, suggesting neuroprotective mechanisms. The extract combination positively affected most of the Sco-induced impairments, underscoring the potential for further investigation of these extracts for therapeutic development.


Assuntos
Disfunção Cognitiva , Demência , Sideritis , Ratos , Masculino , Animais , Escopolamina/efeitos adversos , Ratos Wistar , Acetilcolinesterase , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Demência/induzido quimicamente , Demência/tratamento farmacológico , Aprendizagem em Labirinto
20.
Cells ; 13(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334656

RESUMO

Background: Postoperative cognitive dysfunction (POCD) is a common disorder after general anesthesia in elderly patients, the precise mechanisms of which remain unclear. Methods: We investigated the effect of isoflurane with or without dantrolene pretreatment on intracellular calcium concentration ([Ca2+]i), reactive oxygen species (ROS) production, cellular lactate dehydrogenase (LDH) leak, calpain activity, and cognitive function using the Morris water maze test of young (3 months), middle-aged (12-13 months), and aged (24-25 months) C57BL6/J mice. Results: Aged cortical and hippocampal neurons showed chronically elevated [Ca2+]i compared to young neurons. Furthermore, aged hippocampal neurons exhibited higher ROS production, increased LDH leak, and elevated calpain activity. Exposure to isoflurane exacerbated these markers in aged neurons, contributing to increased cognitive deficits in aged mice. Dantrolene pretreatment reduced [Ca2+]i for all age groups and prevented or significantly mitigated the effects of isoflurane on [Ca2+]i, ROS production, LDH leak, and calpain activity in aged neurons. Dantrolene also normalized or improved age-associated cognitive deficits and mitigated the cognitive deficits caused by isoflurane. Conclusions: These findings suggest that isoflurane-induced cytotoxicity and cognitive decline in aging are linked to disruptions in neuronal intracellular processes, highlighting the reduction of [Ca2+]i as a potential therapeutic intervention.


Assuntos
Anestesia , Anestésicos Inalatórios , Disfunção Cognitiva , Isoflurano , Fármacos Neuroprotetores , Camundongos , Humanos , Animais , Pessoa de Meia-Idade , Idoso , Isoflurano/efeitos adversos , Anestésicos Inalatórios/toxicidade , Fármacos Neuroprotetores/uso terapêutico , Calpaína , Espécies Reativas de Oxigênio/efeitos adversos , Dantroleno/farmacologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/induzido quimicamente , Camundongos Endogâmicos C57BL , Neurônios
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...